Hemozoin Pigment: An Important Tool for Low Parasitemic Malarial Diagnosis

نویسندگان

  • Sarita Mohapatra
  • Arnab Ghosh
  • Ruchi Singh
  • Dhirendra Pratap Singh
  • Bhawna Sharma
  • Jyotish Chandra Samantaray
  • Manorama Deb
  • Rajni Gaind
چکیده

Low parasitemic condition in malaria remains a diagnostic challenge; as the available diagnostic methods failed to detect. Currently, hemozoin (Hz) pigment is gaining attention in the diagnosis of malaria. The major drawback is ease of detection of Hz in routine practice. A pilot study was conducted to evaluate the role of Hz pigment and to compare the performance of quantitative buffy coat assay (QBC) and PCR in such conditions. Clinically suspected cases of malaria were examined by both Giemsa stain and immunochromatographic test (ICT). Samples positive by ICT and negative by Giemsa stain were further examined by nested PCR targeting 18S rRNA and QBC for the presence of malaria parasites and pigments. Thirty blood samples fulfilled the inclusion criteria out of which 23 were Plasmodium vivax (Pv), 4 Plasmodium falciparum (Pf), and 3 mixed (Pv and Pf) by immunochromatographic test. Twenty-one out of 30 (70%) were positive by nested PCR in comparison to 25/30 (83%) by QBC. Samples containing both malaria parasites and Hz pigment by QBC completely showed concordance with the PCR result. However, 61% of total samples containing only Hz pigment were observed positive by PCR. Hz pigment remains an important tool for malaria diagnosis. Identification of leukocytes containing pigments by QBC not only indicates recent malarial infections but also puts light on severity of the disease. QBC assay is a rapid, highly sensitive, and cost-effective method to detect malaria parasites and Hz pigment especially in low parasitemic conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bio-sensing with butterfly wings: naturally occurring nano-structures for SERS-based malaria parasite detection.

Surface enhanced Raman scattering (SERS) is a powerful tool with great potential to provide improved bio-sensing capabilities. The current 'gold-standard' method for diagnosis of malaria involves visual inspection of blood smears using light microscopy, which is time consuming and can prevent early diagnosis of the disease. We present a novel surface-enhanced Raman spectroscopy substrate based ...

متن کامل

Phagocytosis of the malarial pigment, hemozoin, impairs expression of major histocompatibility complex class II antigen, CD54, and CD11c in human monocytes.

In Plasmodium falciparum malaria, large proportions of resident macrophages and circulating monocytes and leukocytes contain massive amounts of the malarial pigment, hemozoin. Previous studies have shown that important functions (e.g., the generation of the oxidative burst, the ability to repeat phagocytosis, and protein kinase C activity) were severely impaired in hemozoin-loaded monocytes. Ex...

متن کامل

Malaria pigment paralyzes dendritic cells

The capacity of malarial infection to suppress the patient's immune responses both to the parasite and to other antigens has long puzzled researchers. A prime suspect, the parasite-produced pigment hemozoin, has now been clearly shown to mediate immunosuppression by inhibiting dendritic cell activity.

متن کامل

Role of monocyte-acquired hemozoin in suppression of macrophage migration inhibitory factor in children with severe malarial anemia.

Severe malarial anemia (SMA), caused by Plasmodium falciparum infections, is one of the leading causes of childhood mortality in sub-Saharan Africa. Although the molecular determinants of SMA are largely undefined, dysregulation in host-derived inflammatory mediators influences disease severity. Macrophage migration inhibitory factor (MIF) is an important regulator of innate inflammatory respon...

متن کامل

Multi-frequency high-field EPR study of iron centers in malarial pigments.

The multi-frequency high-field electron paramagnetic resonance (HFEPR) was used to study the magnetic properties of malarial pigment hemozoin and its synthetic analogue, beta-hematin. (FeIII-protoporphyrin-IX)2 dimers containing five-coordinate high-spin FeIII, S = 5/2, are the building blocks of these pigments. The fit of EPR spectra that were acquired in an unprecedented wide range of microwa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016